05 Prosinec 2011

10-ahlborn-01V posledním desetiletí vedla rostoucí poptávka po energii k využívání nových zdrojů energie jako alternativy k ropě. Rozvinulo se několik technologií, které zahrnují využití obnovitelné energie, jako je větrná energie, slapová energie nebo sluneční záření.

Během posledních pěti let můžeme sledovat velký rozvoj využívání fotovoltaických systémů k výrobě elektrické energie. Tento rozvoj nastal kvůli různým faktorům včetně zdokonalení této technologie a finančních výhod nabízených vládami některých států. V každém případě vedl tento rozvoj k vytvoření mnoha společností, které se věnují vyvíjení, instalování a údržbě solárních parků a farem. Vezměme si jako příklad takovéhoto rozvoje fotovoltaického sektoru Španělsko. V současnosti je jedním z hlavních producentů fotovoltaické energie s odhadovaným instalovaným výkonem 3 200 MW (jen v roce 2008 byl instalovaný výkon 2 500 MW). Tyto instalace samozřejmě musí zajišťovat dostatečnou návratnost investic, aby zůstaly ziskovými. To bude záviset, mezi dalšími faktory, na perfektním provozu instalací.

Fotovoltaické instalace

Fotovoltaická instalace se v zásadě skládá z fotovoltaických panelových systémů instalovaných ve vhodných konstrukcích, invertorů, které převádějí stejnosměrné napětí generované solárními panely na střídavé napětí, systému, který orientuje panely v závislosti na typu instalace, kabeláže, ochranných systémů a souvisejících středněnapěťových prvků, pokud je soustava napojena ke komerční síti. Všechny tyto prvky formují soustavu, která, když funguje správně, poskytuje návrat investic během kalkulovaného období.

Fotovoltaické panely

Fotovoltaický panelový systém se skládá z panelů nebo modulů, které obsahují články založené na polovodičích, které jsou citlivé na sluneční záření. Tyto články generují stejnosměrné napětí. Tyto články jsou seskupeny do panelu v jedné nebo několika paralelních sériích, aby bylo dosaženo požadovaného výkonu a napětí. Poměr mezi napětím a proudem, které generuje článek je znázorněn na charakteristické křivce I–V. Pokud článek přijímá sluneční záření, bude hodnota I×V větší než nula, jinými slovy bude generována elektrická energie. Když článek nepracuje nebo negeneruje elektrickou energii kvůli tomu, že nepřijímá sluneční záření, může být opačně polarizován, to znamená, že se bude chovat jako spotřebič a nikoli jako generátor, což může mít za následek vysoký rozptyl tepla.

Tuto situaci je možné jednoduše detekovat, pokud je použita termokamer a Fluke s technologií IR-Fusion®. Termokamera Fluke bude zároveň zachycovat celkový radiometrický snímek tepleného záření spolu se snímkem ve viditelném oboru spektra, přičemž bude překrývat jeden obrazový bod druhým s různou měrou průhlednosti. Takto získaný obraz ukáže povrchové teploty zobrazovaných objektů (v tomto případě fotovoltaických panelů) s použitím barevné palety, kterou může uživatel zvolit a která reprezentuje různé teploty s použitím různých barev spolu s obrazem ve viditelné oblasti spektra, což zjednodušuje identifikaci jednotlivých prvků. Díky obrazu v infračerveném oboru jsme schopni vidět, jak se vadné články přehřívají.

10-ahlborn-02

Nejpříhodnější podmínky pro detekci tohoto typu problému jsou v době, kdy má panel největší výkon, standardně uprostřed jasného dne. Za těchto podmínek je možné detekovat články s teplotami dosahujícími až 111°C. Tento typ problému vede ke snížení výkonu panelu, což znamená, že se investice vrátí později. Navíc problémy spojené s přehříváním mohou vést ke snížení účinnosti okolních článků nebo dokonce k jejich poruchám, čímž se může problém rozšířit na větší oblast příslušné ho panelu.

Fotovoltaické panely je možné pomocí termokamery kontrolovat z přední nebo zadní strany. Druhý způsob je zvláště výhodný, protože se vyhnete problémům s odrazem slunečního záření. V každém případě umožňuje termografie identifikovat panely s horkými body rychleji a bezdotykově nebo z větší vzdálenosti. Jednoduše stačí nasnímat danou instalaci pomocí termokamery.

Pokud se snažíte vyhnout problémům spojeným s inverzní polarizací článků, mohou fotovoltaické moduly zahrnovat ochranné diody (závěrné diody, jednosměrné diody nebo nulové diody), které budou rozptylovat více výkonu s tím, jak bude růst počet vadných článků. Toto teplo může být také detekováno pomocí termokamer snímáním panelu ze strany, kde je umístěno připojení.

Zvláštní pozornost byste měli věnovat přítomnosti stínů na fotovoltaických panelech způsobených stromy, sloupy středního napětí, dalšími panely atd., které mohou vést k výskytu nepravidelných tepelných oblastí a tudíž i falešné interpelaci (obzvláště pokud jsou infračervené snímky pořízeny časně z rána nebo pozdě odpoledne).

Další prvky, které by měly být kontrolovány

Dalšími místy, které mohou být kontrolovány pomocí termokamer jsou motory. Kvůli různým vlivům může docházet k jejich zahřívání do míry, kdy je jejich užitková životnost významně snížena. Ke kontrole je možné použít i jiné měřicí nástroje, jako jsou klešťové měřiče, přístroje na měření izolace atd. Tato opatření jsou ale velmi nákladná.

Podobně můžeme používat termokameru pro detekci nadměrného zahřívání invertorů a středněnapěťových transformátorů. V středněnapěťových transformátorech můžeme detekovat problémy se středně a nízko napěťovými připojeními, jakož i problémy s vnitřním vinutím.

Dalším místem, kde bude termografie velmi užitečná při provádění preventivní a prediktivní údržby, jsou spojovací body, které se mohou časem uvolňovat, což může vést k provozním problémům a zbytečným poruchám.

Závěr

Při dané době amortizace fotovoltaických elektráren (mezi 6 a 10 lety) je podstatné zajistit, aby byl výkon elektrárny v rozmezí limitů zvažovaných během fáze návrhu elektrárny tak, aby byla její ziskovat garantována po celou dobu provozu. V tomto ohledu je termografie základním nástrojem pro analyzování provozu a účinnosti různých prvků tvořících kompletní instalaci: fotovoltaické moduly, spojení, motory, transformátory, invertory atd. Snížení účinnosti fotovoltaických panelů může vést k významnému snížení doby amortizace elektrárny. Všechny tyto aspekty nám ukazují, jak je termografie nezbytným nástrojem při údržbě instalací. Navíc je možné tento nástroj velmi jednoduše používat, což umožňuje jeho plnou integraci do sady nástrojů používaných k údržbě.